Source code for safe.gis.numerics

# coding=utf-8
"""**Numerical tools**
"""

import numpy
from safe.common.utilities import verify


[docs]def ensure_numeric(A, typecode=None): """Ensure that sequence is a numeric array. :param A: Is one of the following: * Sequence. If A is already a numeric array it will be returned unaltered If not, an attempt is made to convert it to a numeric array * Scalar. Return 0-dimensional array containing that value. Note that a 0-dim array DOES NOT HAVE A LENGTH UNDER numpy. * String. Array of ASCII values (numpy can't handle this) :param typecode: numeric type. If specified, use this in the conversion. If not, let numeric package decide. typecode will always be one of num.float, num.int, etc. :raises: Exception :returns: An array of A if it is found to be of a numeric type :rtype: numpy.ndarray .. note:: that numpy.array(A, dtype) will sometimes copy. Use 'copy=False' to copy only when required. This function is necessary as array(A) can cause memory overflow. """ if isinstance(A, basestring): msg = 'Sorry, cannot handle strings in ensure_numeric()' # FIXME (Ole): Change this to whatever is the appropriate exception # for wrong input type raise Exception(msg) if typecode is None: if isinstance(A, numpy.ndarray): return A else: return numpy.array(A) else: return numpy.array(A, dtype=typecode, copy=False)
[docs]def nan_allclose(x, y, rtol=1.0e-5, atol=1.0e-8): """Does element comparison within a tolerance, excludes overlapped NaN. :param x: scalar or numpy array :type x: numpy.ndarray, float :param y: scalar or numpy array :type y: numpy.ndarray, float :param rtol: The relative tolerance parameter :type rtol: float :param atol: The absolute tolerance parameter :type atol: float :raises: :returns: The result of the allclose on non NaN elements :rtype: bool Note: Returns True if all non-nan elements pass. """ xn = numpy.isnan(x) yn = numpy.isnan(y) if numpy.any(xn != yn): # Presence of NaNs is not the same in x and y return False if numpy.all(xn): # Everything is NaN. # This will also take care of x and y being NaN scalars return True # Filter NaN's out if numpy.any(xn): x = x[-xn] y = y[-yn] # Compare non NaN's and return return numpy.allclose(x, y, rtol=rtol, atol=atol)
[docs]def normal_cdf(x, mu=0, sigma=1): r"""Cumulative Normal Distribution Function :param x: scalar or array of real numbers :type x: numpy.ndarray, float :param mu: Mean value. Default 0 :type mu: float, numpy.ndarray :param sigma: Standard deviation. Default 1 :type sigma: float :returns: An approximation of the cdf of the normal :rtype: numpy.ndarray Note: CDF of the normal distribution is defined as \frac12 [1 + erf(\frac{x - \mu}{\sigma \sqrt{2}})], x \in \R Source: http://en.wikipedia.org/wiki/Normal_distribution """ arg = (x - mu) / (sigma * numpy.sqrt(2)) res = (1 + erf(arg)) / 2 return res
[docs]def log_normal_cdf(x, median=1, sigma=1): r"""Cumulative Log Normal Distribution Function :param x: scalar or array of real numbers :type x: numpy.ndarray, float :param median: Median (exp(mean of log(x)). Default 1 :type median: float :param sigma: Log normal standard deviation. Default 1 :type sigma: float :returns: An approximation of the cdf of the normal :rtype: numpy.ndarray .. note:: CDF of the normal distribution is defined as \frac12 [1 + erf(\frac{x - \mu}{\sigma \sqrt{2}})], x \in \R Source: http://en.wikipedia.org/wiki/Normal_distribution """ return normal_cdf(numpy.log(x), mu=numpy.log(median), sigma=sigma) # noinspection PyUnresolvedReferences
[docs]def erf(z): """Approximation to ERF :param z: input array or scalar to perform erf on :type z: numpy.ndarray, float :returns: the approximate error :rtype: numpy.ndarray, float Note: from: http://www.cs.princeton.edu/introcs/21function/ErrorFunction.java.html Implements the Gauss error function. erf(z) = 2 / sqrt(pi) * integral(exp(-t*t), t = 0..z) Fractional error in math formula less than 1.2 * 10 ^ -7. although subject to catastrophic cancellation when z in very close to 0 from Chebyshev fitting formula for erf(z) from Numerical Recipes, 6.2 Source: http://stackoverflow.com/questions/457408/ is-there-an-easily-available-implementation-of-erf-for-python """ # Input check try: len(z) except TypeError: scalar = True z = [z] else: scalar = False z = numpy.array(z) # Begin algorithm t = 1.0 / (1.0 + 0.5 * numpy.abs(z)) # Use Horner's method ans = 1 - t * numpy.exp( -z * z - 1.26551223 + t * ( 1.00002368 + t * (0.37409196 + t * ( 0.09678418 + t * ( -0.18628806 + t * ( 0.27886807 + t * ( -1.13520398 + t * ( 1.48851587 + t * ( -0.82215223 + t * 0.17087277))))))))) neg = (z < 0.0) # Mask for negative input values ans[neg] = -ans[neg] if scalar: return ans[0] else: return ans
[docs]def axes_to_points(x, y): """Generate all combinations of grid point coordinates from x and y axes :param x: x coordinates (array) :type x: numpy.ndarray :param y: y coordinates (array) :type y: numpy.ndarray :returns: * P: Nx2 array consisting of coordinates for all grid points defined by x and y axes. The x coordinate will vary the fastest to match the way 2D numpy arrays are laid out by default ('C' order). That way, the x and y coordinates will match a corresponding 2D array A when flattened (A.flat[:] or A.reshape(-1)) Note: Example x = [1, 2, 3] y = [10, 20] P = [[1, 10], [2, 10], [3, 10], [1, 20], [2, 20], [3, 20]] """ # Reverse y coordinates to have them start at bottom of array y = numpy.flipud(y) # Repeat x coordinates for each y (fastest varying) # noinspection PyTypeChecker X = numpy.kron(numpy.ones(len(y)), x) # Repeat y coordinates for each x (slowest varying) Y = numpy.kron(y, numpy.ones(len(x))) # Check N = len(X) verify(len(Y) == N) # Create Nx2 array of x and y coordinates X = numpy.reshape(X, (N, 1)) Y = numpy.reshape(Y, (N, 1)) P = numpy.concatenate((X, Y), axis=1) # Return return P
[docs]def grid_to_points(A, x, y): """Convert grid data to point data :param A: Array of pixel values :type A: numpy.ndarray :param x: Longitudes corresponding to columns in A (west->east) :type x: numpy.ndarray :param y: Latitudes corresponding to rows in A (south->north) :type y: numpy.ndarray Returns: * P: Nx2 array of point coordinates * V: N array of point values """ msg = ('Longitudes must be increasing (west to east). I got %s' % str(x)) verify(x[0] < x[1], msg) msg = ('Latitudes must be increasing (south to north). I got %s' % str(y)) verify(y[0] < y[1], msg) # Create Nx2 array of x, y points corresponding to each # element in A. points = axes_to_points(x, y) # Create flat 1D row-major view of A cast as # one column vector of length MxN where M, N = A.shape # values = A.reshape((-1, 1)) values = A.reshape(-1) # Return Nx3 array with rows: x, y, value return points, values
[docs]def geotransform_to_axes(G, nx, ny): """Convert geotransform to coordinate axes :param G: GDAL geotransform (6-tuple). (top left x, w-e pixel resolution, rotation, top left y, rotation, n-s pixel resolution). :type G: tuple :param nx: Number of cells in the w-e direction :type nx: int :param ny: Number of cells in the n-s direction :type nx: int :returns: Two vectors (longitudes and latitudes) representing the grid defined by the geotransform. The values are offset by half a pixel size to correspond to pixel registration. I.e. If the grid origin (top left corner) is (105, 10) and the resolution is 1 degrees in each direction, then the vectors will take the form longitudes = [100.5, 101.5, ..., 109.5] latitudes = [0.5, 1.5, ..., 9.5] """ lon_ul = float(G[0]) # Longitude of upper left corner lat_ul = float(G[3]) # Latitude of upper left corner dx = float(G[1]) # Longitudinal resolution dy = - float(G[5]) # Latitudinal resolution (always(?) negative) verify(dx > 0) verify(dy > 0) # Coordinates of lower left corner lon_ll = lon_ul lat_ll = lat_ul - ny * dy # Coordinates of upper right corner lon_ur = lon_ul + nx * dx # Define pixel centers along each directions # This is to achieve pixel registration rather # than gridline registration dx2 = dx / 2 dy2 = dy / 2 # Define longitudes and latitudes for each axes x = numpy.linspace(lon_ll + dx2, lon_ur - dx2, nx) y = numpy.linspace(lat_ll + dy2, lat_ul - dy2, ny) # Return return x, y